
Experiment ATLAS CMS DUNE EDM4hep NOvA*

General Overview

Speaker Scott Snyder Matti
Kortelainen

Mike Kirby Benedikt
Hegner

Marc Paterno

Talk Link
(Indico)

https://indico.
fnal.gov/even
t/57595/contri
butions/2565
83/attachmen
ts/162731/21
5145/2023-0
1-10-edm.pdf

https://indico.
fnal.gov/even
t/55536/

https://indico.
fnal.gov/even
t/58260/

https://indico.fna
l.gov/e/55542

https://indico.fna
l.gov/event/5896
2/contributions/2
62454/attachme
nts/165673/2201
82/DataOrganiz
ationForParallel
Processing.pdf

Github Link: https://gitlab.
cern.ch/akras
zna/asyncga
udi.git

– https://github.
com/key4hep
/EDM4hep

https://github.
com/art-fram
ework-suite/h
ep-hpc

Languages C++/CUDA C++/CUDA/A
LPAKA

C++/CUDA C++/python python
(PandAna*)

Storage
Support

ROOT ROOT ROOT/HDF5 ROOT/LCIO HDF5

Data Model
(CPU)

xAOD Arrays
(std::vector<F
oo>)

art POD (Plain
old Data)

CAF
(Common
Analysis
Format)

Data Model
(GPU)

xAOD-Like SoA, ASoA Array of
simple types,
Follow
development
s on ATLAS,
CMS and
other projects

POD (Plain
old Data)

CAF
(reorganized)
(Columnar to
be read with
pandas)

Detailed
Summary
Link
(Google
Doc)

Link Link Link Link Link

Table I: A brief overview of the talks given by various speakers from various experiments

https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/57595/contributions/256583/attachments/162731/215145/2023-01-10-edm.pdf
https://indico.fnal.gov/event/55536/
https://indico.fnal.gov/event/55536/
https://indico.fnal.gov/event/55536/
https://indico.fnal.gov/event/58260/
https://indico.fnal.gov/event/58260/
https://indico.fnal.gov/event/58260/
https://indico.fnal.gov/e/55542
https://indico.fnal.gov/e/55542
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://indico.fnal.gov/event/58962/contributions/262454/attachments/165673/220182/DataOrganizationForParallelProcessing.pdf
https://gitlab.cern.ch/akraszna/asyncgaudi.git
https://gitlab.cern.ch/akraszna/asyncgaudi.git
https://gitlab.cern.ch/akraszna/asyncgaudi.git
https://gitlab.cern.ch/akraszna/asyncgaudi.git
https://github.com/key4hep/EDM4hep
https://github.com/key4hep/EDM4hep
https://github.com/key4hep/EDM4hep
https://github.com/art-framework-suite/hep-hpc
https://github.com/art-framework-suite/hep-hpc
https://github.com/art-framework-suite/hep-hpc
https://github.com/art-framework-suite/hep-hpc
https://docs.google.com/document/u/0/d/1tU9zRqxzyVDRgPSRpvtoWVIwbVLG5o_5TXGXfimAC4o/edit
https://docs.google.com/document/u/0/d/1oyYL0S3Mh2fZhvwvzO3SYbE7g3TKYHei0SDy4RTE2JE/edit
https://docs.google.com/document/u/0/d/1BV6_rlpFNWO2iM4SgXafuTy__GD5IWhF02PS39ebJPA/edit
https://docs.google.com/document/d/1D51fewcLXGJHGeMay9rgK0pWu9gTdVnh4hFlmelDtdA/edit?usp=sharing
https://docs.google.com/document/d/1szHgdkMTwKdasj4kky3GMcIcNYEI-R7ALK3MhHFCN8k/edit?usp=sharing


Talk Series
As a part of survey work, 5 talks from various experiments and projects were organized to
understand the ongoing efforts to make the HEP data GPU friendly: 3 talks were given by the
representatives of the experiments (CMS,DUNE and ATLAS); 2 talks were related to the general
effort for the HEP experiments.

Data Model Design

Based on the survey, most of the effort in making the data GPU/HPC friendly has focused on
preserving the core structure of the current data layouts. In the case of ATLAS, the data model
is based on xAOD. CMS uses vector-like containers to store arrays of objects and the DUNE
experiment uses the “art framework". The DUNE-DAQ writes the raw detector data into the
HDF5 format as arrays of simple types which can facilitate the offloading of the data into the
GPUs downstream of the computational workflow. EDM4hep data model is designed with the
consideration of future collider experiments. NOvA converts it’s final ntuples into the HDF5
datasets with the data represented as columnar tables that is optimized for parallel I/O and can
be offloaded into the GPUs. Unlike ATLAS, CMS and DUNE efforts, where the focus is on
development of data model that can be integrated into their computational workflow, the NOvA
experiment takes the existing object oriented data, reorganizes into tabular format and writes
them into HDF5 format that can then be used to perform the physics analysis.

ATLAS Experiment

The data model used by the ATLAS experiment is the xAOD data model. A typical example of
the xAOD data model is shown in the flow diagram below.

https://indico.cern.ch/event/887763/contributions/3785010/subcontributions/302546/attachments/2008042/3354193/c_240320.pdf


In this model, the object pointers are used to access the variables related to the data object.
The object pointers are stored separately in std::vector<T*> like containers
(DataVector<Electron> in above example). The variables themselves are stored in the
contiguous arrays.

Transformation to make Data GPU Friendly

Data Model:
Since the data itself is represented as contiguous arrays, it can be copied into the GPUs
explicitly.
In the case of nested arrays and 2-D vectors, ATLAS is thinking about the use of flat arrays
since the Aux variables are already represented as contiguous arrays of fixed size. Use
array::(begin,end) like indexing functionalities to keep track in the flattened 1D space. From the
user's perspective, these flat arrays will look like a 2D “std::vector”.

Memory Management

Memory management is not implemented yet but the plan is to utilize “std::pmr” libraries to
manage memory resources and pass them to the Auxcontainer constructors.

Compatibility with the ROOT
ROOT 6.26 seems to support backward and forward compatibility making it possible to
implement memory allocator related libraries. However there are still ATLAS specific
compatibility issues to resolve.

Persistency
xAOD data models remain intact or minimally modified and will be persisted as they are now in
the ROOT.



CMS Experiment

CMS data models are stored as “std::vector<foo>” like containers where foo is a template for a
class. In their model, a data product can reference other data products. Similarly the elements
of different containers (or collections) might be associated with one another.

Transformation to make data GPU Friendly

Data Model
The CMS event data models are “std::vector<Foo>” like containers. The GPU friendly version of
these data structures are the SoA with runtime-determined memory allocation to minimize the
memory footprint. The data structure is given by a Layout class and the memory allocation is
handled by a separate Alpaka<Buffer> library. The interaction with the Layout members is
carried out with a “View” object.

The CMS SoA layout class supports arrays of “simple types" (size defined during the run time),
Eigen vectors or matrices (size defined during compile time) and scalars of “simple types”.

Figure: SoA Layouts in the Memory (left) and the schematic of a View object interaction with the
SoA elements (right). Left figure shows the padding implementation for caching alignment.

Memory Management
The Layout or the View objects do not own memory and hence cannot be offloaded into the
GPUs directly. Instead, the event data products (which own the memory) are passed into the



device (GPUs) and host (CPUs) using the “Portable Collection” class template. Through this
class template, “alpaka::Buf<...>” (alpaka buffer) is used to allocate the memory used for the
layout object instead.

Note that the ATLAS is thinking about using std::polymorphic for memory allocation while CMS
is using a custom class called “Portable Collection” which (de)allocates host and device memory
separately.

Persistency
Data is persisted as “Portable Host Collection” in the ROOT. Layer object defines the
serialization of SoA. The Serialization information should be added in the ROOT dictionary
definition XML files. Plans and discussion with ROOT experts are underway to minimize the
amount of information needed to add in the XML files.

DUNE Experiment
Unlike ATLAS or CMS, the DUNE experiment is still being constructed and a lot of computing
infrastructure is in the R&D stage. Actual data taking will start from 2031 AD. The tests are
being done by running the proto type LArTPCs that will eventually become part of the DUNE far
detector.



Figure: (Proto) DUNE has the opportunity to explore the utilization of GPUs in its workflows from
raw DAQ objects (art objects) to the final ana tuples (simple TTrees).

Transformation to make GPU Friendly Data model

Figure: (Proto) DUNE is exploring and experimenting with the workflow that uses GPUs in
various stages.

Currently, the DUNE writes the DAQ data into the HDF5 on a trigger by trigger basis (1 data set
per trigger with the metadata that links to information related to channel, APA etc). The goal is
to keep the DAQ data design friendly to offload into the GPU/HPC directly. Currently, the DAQ
data is basically arrays of simple types with relevant metadata and attributes written as HDF5
objects. The motivation for adopting/testing with HDF5 format for DAQ data is to allow ML/AI
reconstruction at the reconstruction level. Similarly, at the ntuple level, the data is stored in
simple TTrees allowing it to move ahead to columnar or RNTuple format in the future. Because
DUNE is years away from collecting the data, it plans to leverage the progress made in ATLAS,
CMS and other projects in this field.



Memory Management
—---

Persistency
ROOT (TTrees, RNtuple*), HDF5


